从中科院获悉,中国科学院上海高等研究院和上海科技大学联合科研团队在
合成气直接制
烯烃方面取得重大进展,《自然》(Nature)杂志于10月6日发表了相关成果。通过采用全新催化剂活性位结构,该项研究实现了在温和条件下
合成气高选择性直接制备
烯烃,对拓展
合成气催化转化领域有重大意义。同时,该项研究成果具有很高的经济效益,将有利于促进我国煤化工的发展。
合成气经费托反应路线直接制
烯烃,是指CO和H2在催化剂作用下,通过费托(Fischer-Tropsch,简称FT)反应路线合成
烯烃(也称FTO)的过程。在FT合成反应中,一般认为先进行碳氧键断裂形成碳吸附中间物种,再发生碳碳连接形成不同碳链长度的产物。针对经典的FT机理,一般认为产物的链增长服从聚合机理,即产物选择性近似遵循Amderson-Schulz-Flory(ASF)分布,不同的链增长因子(α)数值对应不同的产物分布。目前,FTO存在的主要问题是
烯烃选择性的提高及产物分布的有效控制。由于FTO是强放热反应,过高的反应热容易引起局部过热,发生飞温现象,促进甲烷化和积碳的发生,尤其是由于ASF分布规律以及动力学和热力学等方面的限制,大量甲烷的生成严重降低了总
烯烃收率。此外,由于在FT合成过程中
烯烃作为一种中间产物,极易发生二次加氢反应转化为饱和烷烃,从而进一步降低
烯烃选择性。鉴于
合成气直接制备
烯烃路线受上述因素的制约,为了实现很好的FTO催化性能,设法摆脱ASF分布的限制,同时体现低甲烷选择性及高
烯烃选择性,有必要开发全新的催化活性位结构。
中科院上海高研院低碳转化科学与工程重点实验室(低碳转化实验室)主要开展含碳资源低碳转化利用核心技术的研发。为了对发展非石油依赖型的能源化工产业提供技术支撑和解决方案,低碳转化实验室一直致力于
合成气催化转化构效关系和反应网络的研究以及催化剂的研发。最近,低碳转化实验室创造性地研发了一种全新的催化剂,发现在温和的反应条件下(250 oC和1~5 atm),该催化剂可实现高选择性
合成气直接制备
烯烃,甲烷选择性可低至5%,低碳
烯烃选择性可达60%,总
烯烃选择性高达80%以上,烯/烷比可高达30以上;同时,产物碳数呈现显著的窄区间高选择性分布,C2-15选择性占90%以上,产物分布完全不服从经典的ASF规律,体现出很好的FTO性能。为了确定活性位的本质,该实验室通过深入的构效关系研究并结合DFT理论计算,确定活性位结构是暴露面为{101}和{020}的Co2C纳米平行六面体。Co2C一般被视为Co基FT催化剂失活的主要原因之一,即在
合成气转化过程中Co2C活性很低且CH4选择性很高。本工作揭示Co2C存在显著的晶面效应,相比于其它暴露面,{101}晶面非常有利于
烯烃的生成,同时{101}和{020}晶面可有效抑制甲烷的形成。因此,暴露面为{101}和{020}的Co2C纳米平行六面体呈现完全异于传统FT活性相的催化性能,甲烷选择性很低而
烯烃选择性很高,产物偏离经典ASF规律并体现窄区间高选择性分布。
近年来,为缓解对石油资源的依赖,国内外研究主要以非石油路线为主,即利用煤炭或天然气资源直接或间接制备
烯烃。在目前的主流工艺中,首先以煤或天然气制备
合成气(主要成分是一氧化碳和氢气,即CO和H2),然后由
合成气转化制得的甲醇,最终通过甲醇转化路线(包括甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺)生产
烯烃产品。该技术涉及两大步骤,即
合成气经铜基催化剂合成甲醇,甲醇经分子筛催化剂转化为
烯烃。无疑,如能减少反应步骤,将
合成气直接高选择性合成
烯烃,将体现出流程更短、能耗更低的优势。
目前,中科院上海高研院已与合作单位山西潞安集团等企业达成协议,拟在催化剂放大制备、反应器设计及工艺过程开发等方面共同合作,力争尽快实现工业示范和产业化,促进我国煤化工的发展。
上海大学、华东师范大学、中科院物理研究所和化学研究所参与了部分工作。此项研究工作得到了自然科学基金委、科学技术部、上海市科委、山西潞安集团和中科院的大力支持。